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'?i':;~'c ~ Every once in a while a question arises about whether or not some
important terms have been omitted from the basic equations as we use
them in meteorology. The questions usually center around metrical
terms, terms that involve the shape of the earth, especially its departure
from a perfect sphere. The concern is that, although omitted effects
may be small, they may be large enough and systematic enough to
accumulate in some way into important errors. My aim here is to
derive the equations with rigor, so that all terms and effects can be
closely inspected. I won't draw any conclusions, except to say that
the rigorous derivation doesn't lead to any surprises.

Equations of motion

I start with the vector equations in Newtonian space.

dV + vp = 0(1)
dt p

where t is time, V velocity, G pure gravity vector, p density, and

p pressure. Now, consider a frame of reference rotating with the earth.
Referring to the figure below, let the origin be at earth's center, the
z-axis be directed along the center of earth's rotation, x and y be the
pair of other coordinates in Newtonian space, and x' and y' in the
rotating frame.
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Then x' and y' are related to x and y according to

x' = xcos wt +y sin wt
y' = -x sin wt + y cos wt

where w is the magnitude of Q., 0 is the rotation vector of the earth,
and t is the time since the x'-axis once coincided with the x-axis.
Representing the unit x- and y-vectors as Vx and Vy, and likewise
for the unit x'- and y'-vectors, by differentiating I get

V.x' = Vx cos wt + Vy sin wt
Vyt = -Vx sin wt + Vy cos wt (2)

Consider any vector, A, varying in space and time. I expand it in
terms of unit vectors and appropriate components,

A= Ax' Vx' + Ay, Vyt + Az Vz

and differentiate it,
_.

dA~i ~ vy' + dAz dVx' d ryxd' (3)dA -= dtx Vx; + d Vy' + dA- Vz + Ax- d-- + Ay, dt
dt dtt dt dAAy dt

(K But, from (2)

dVx W(-Vx sin wt + Vy cos t) = w Vy' = x Vx'
dt

and similarly,

dVy'= -t Vx' = x Vy'
:::'~k:-::'::: dt

The sum of the first three terms in the right hand member of (3)
are the substantial rate of change of the vector A with respect to time,
apparent to an observer from a location fixed in the rotating frame.
I call such an apparent rate of change d' A/dt. Thus, since

X Vz = W Vz X Vz 0,

dA _ d'A + 0 x A
dt dt (4)

Now,
V- dR

dt
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where A is the radius vector from earth's center to the mass-point in
question. Applying the result (4), I find

- - ~~~~V= VI + Qx R

where V' = d'R/dt, the velocity relative to the rotating frame, and
Q x R is the velocity, at the same point, of the rotating frame. Applying
(4) again, I find

-4~~~~4 4-

dV + X
dt dt

d'V'd + z + XV' +Q x ( x R)dt

With the last result, (1) becomes
--4

:,v 2 I xV + Q x (O x R) - G_ +!p Vp = 0 (5)

Now, V X V X X ( X X) =0, and I may therefore write

x(O x( X) - G = g Vr'

where g- 9__80Ocm sec--p, a constant. The scalar r', then, is the geo-
potential height used in meteorology. Assuming mean sea level to be
a surface of constant r', I arbitrarily set r' = 0 there, and r' is then
specifically geopotential height above mean sea level. Consistent with
terminology of meteorology, I call-0g Vr' the "gravity" vector. "Gravity,"
then, consists not-only of "pure" gravity G, the attraction of the earth fo0r
air, but also -0 x (f X R), the centrifugal force due to earth's rotation.
Substitution into (5) gives

-4

d'V' + ZO x V' + g Vr' +1 Vp = 0 (6)
dt p

I now define unit vectors,

i =r cos VA
j =r V
k Vr

where k, ~, and r are the coordinates, east longitude, latitude, and distance
from earth's center, respectively. As I define them here, they are truly
spherical coordinates with s being the angle between Vr and the equatorial
plane. In particular, latitude is not that used by the navigator, which is
the angle between the vertical, Vr', and the equatorial plane. My defini-

tion here is consistent with common practice in meteorology, particularly
in numerical weather prediction. I similarly define the three components

* t ~ of motion
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u = r cos ¢ d'dt

v = r d'_
dt

w=d'r
dt

I choose the x'-axis to pass through the Greenwich meridian, and for
convenience introduce the parameter s, which is a cylindrical coordinate,
namely, normal distance from the z-axis. Then

X = s cos X
y' = s sin X

s = r cos q
z = r sin 

e .~ ?-- Thus,

Vx' = -i sin X + Vs cos )
Vy' = i cos X + Vs sin 
Vs =-jsin 5 +k cos
Vz = j cos ' + k sin 

( ~These may be inverted by pairs, the first two for i and Vs, the second
two for j and k. Thus,

¢~:;[1~.~-~~ i - -Vx' sin . + Vy' cos X
Vs= Vx' cos + Vy' sin 
j = -Vs sin ~ + Vz cos qS (7)
k = Vs cos 5 + Vz sin

The vector V' expanded is

V' = ui + vj + wk

and therefore,

d'=' d'ui + d'vj + dw k + u d + v d'k
dt dt dt dt dt dt dt
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But differentiating (7), we find after a little manipulation,

di = u (j tan q - k)
dt r

d'j =_- u itan , - v kdt r r

d'k-u i + v j
dt r r

Thus,

d'V'
dt

(d'u v u tan j +
dt r

+ (d'v + u u tan O +
Xdt r

w v \j +(d'w-
r Y \ dt

Now

= w Vz = w (j cos g + k sin 0)

o x Vt = i wo (-v sin 0 + w cos 0)
+ w u sin q - k w u cos 

With (8) and (9), the component equations of (6) become

d'u u sin + w- v + --
dt r cos 5 r

- 2 w v sin q + 2 w w cos 0

+ g ar'
r cos g 8X

+ lap = 0
p r cos 8 ax

d'v + u u sin + v w
dt r cos i r

+2 w u sin ~

+ g ar' + 1 ap = 0
r a p r a

e Q(..
and

(8)

(9)

(10a)

/

(lOb)
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d'w u2+v2
.\~ ~ dt r

- 2 w u cos 5

+ g r'+ la2= 0
Or p Or

Now, the unit vector k = Vr is not a vertically directed vector, but
Vr' is. Nor are differentiations with respect to X and 9 in (10) along a
horizontal surface, which is defined as a surface of constant r', not
constant r. I will now transform the derivatives from X, 0, r-space to
l, 9, r'-space. Primed partial derivatives will have the meaning:

OX axr' (Ila)

a (x \80J>~)X~~~~~~,,r' ~(lib)

O = /

ar ' ! ' (11c)

* '/ The transformation formulas used are

ax OX Oax Or

a _ 0 O'r 0
a 09a 09 0 Or

O_ =r' 
Oar r Or r'

and thus, (10) become

d'u vu sin +uw
dt r cos 6 r

- 2 uW v sin 0 + 2 W -w cos 5

+1 a'p
p r cos 9 OX

,-, ~ _O'r Or' (g + lap )>= 0 (12a)
_ ( 91 ~~r cosq aX Or p ar

., (. ,? ..
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0t ~ d~'v + u sin + vW(t~ ~ dt r cos r

+ 2 ( u sin 

+ I a'p

p r8q

8'r 8r'/(g +l: =Io5 Tr ( ~ ar )(12b)
rD6 Drr \ p D'r'J

d 'w u +v 2

dt r

- 2 w u cos 

~-':~;--::s,:r'(g + I ap_) 0 ('12cj'Or Og+- Dr p Or'/

We are not quite finished at this point, because w is not generally {vellr'eilated tothe "'verticafl-motion", used in meteorology. The substantial
derivative applied to a scalar may be expanded in terms of partial deriv-

~* ( atives in t, , , r'-space thusly,

d d' at +ua +v8 +w' (13)~~~~+ ., + V~.af~.~z%~ ~ dt dt at r cos 0 ah r 8O Dr'

where w' = dr'/dt, and the prime on the partial in time distinguishes it
from the local partial in Newtonian space. Now,

dr airuO' r a'rw -dr= Ut +v v- +w r (14)dt r cos X OX r 8( Or'

The first term in the right-hand-most member is very small, depending
only on u and variations of gravity along a latitude circle. The next term,
however, is not generally small compared to the last, on the scales withwhich numerical weather prediction presently deals. The International
Ellipsoid of Reference has a flattening of 1/297, which is a close estimate
of 8'r/(r86) at 45 ° latitude. A northerly wind of 20 m sec -1 yields about
7 cm sec 1 for that term there, a large vertical motion, but not beyondthe order of magnitude of w' on the storm scale and larger. It is w', of
course, that is the "vertical motion" of meteorology. The departure

*·(
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of a8 r/ar from unity, by the way, can be estimated by comparing the~* ( variation of the gravitational force with the constant g = 980 cm sec-1The departure from unity turns out to be generally less than 0. 3%.
The hydrostatic approximation is obtained by neglecting the firstthree terms in (lZc):

g +1 n - 0
p 8r'

With this approximation, the last terms in (12a) and (l2b) vanish.. Inmeteorology, the terms in (12a) and (12b) in which w appears explicitlyare also usually neglected as being very small.

There are other small aspects of (12) that are not always realized.The velocity components u and v are not quite horizontal, but theirii . avariation from the horizontal is less than 1/297 rad. An estimate of their:,,,?,*;: j departure from horizontal components is l-cos(l/297), less than 0. 0006%.The partial derivatives (Ila) and (l1b) divided by r cos $ and r, respectively,are not quite partials with respect to distance in the horizontal. Theseappear explicitly in (12a) and (12b) operating on p, but are also implicitin the first 'terms of those equations, through (13). The variation of thedifferentiated'variable is taken on a horizontal surface, a geopotential~( surface-, but the variation of distance is taken on a coincident sphere* \ concentric with earth's ceniter. Departures from "horizontal" derivativescan be estimated again by l-cos(l/297), less than 0. 0006%. Similarlythe partial (1lc) is not taken along the vertical, but has a similarly smalldeparture from a vertical derivative with respect to r'.

The equation of continuity

I start withthe equation in the form

dp + 
dt V. 0

so that the problem centers around divergence of velocity. I first note thatV. (0xR) -0, and therefore v 'V VV', and

I dp + '= 0
p dt

*(
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Now,

V. V' = V (ui + vj + wk)
= i * Vu + j . Vv + k. Vw

+u V-i + v V-.j +w V. k

But, taking the divergence of (7), we find after a little manipulation,

V i = 0

V. j = -sin 6
r cos 6

V- k = 

Thus,

VsV, = Elu + av + aw
r cos 6 aX r 86 ar

_ v sin + 2w
rcos s r

Now consider the quantity

8w + w = 8rw Or' 8rw
8r r rOr ar rOr'

From (14), after some manipulation, we find

8rw= Or' (u 8'r +
rr Or r r Or' cos aX + rw' 'Or8r '/

8u a'r + av 8'r
8r r cos 6 a, 8r r aq

+ aw+ w' ar
Or' r Or'

+ ar' d ar
ar dt Or'

and the first two terms in the right hand member of (15) when transformed
to X, 6, r'-space are

au v+ v
r cos 6 8X r 86

atu
r cos 6 ax

+ aOv
r a

- u a'r - 8v 8'r
8r r cos 6 8 8r r c

(

(

(15)

.. 7 :.7"- ,, ; -q. �' I ..' I---'
Itij-,�z --4. -:'p

0
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With the last two results, (15) becomes

VV 8'u + 8'v + awl v sin
r cos 8x i, 8a 8r' r cos

+ w + w' r + 8 r' d 8r
r r 8r' 8r dt 8r'

In meteorology, the last three terms are usually neglected. On
the scales numerical weather prediction deals with, the divergence
V'V' is of the order 10- sec -1 , roughly 1000 times larger than those
terms. For example, for w' = 10 cm 'sec 1,

WW' 8r -13
_w w' 8r 2 X 10 - sec
r r 8r'

To evaluate the last term, I note that

ar' g'

where g' is the magnitude of the gravity vector including the centrifugal
force of earth's rotation. An approximation giving the variation of g'
with latitude is

g' g(-0. 003 cos4)

and-with altitude in cm,

~'~ g(l-3 x 10-9r ' )

'H i-. ;,... Now,

8r' d 8r =-1 a' +v 8g' +w, ')
___ -- - u ~~ + vi.+w8

8r dt 8r' g' r cos 8 X r 8a art

The first term on the right hand side is very small, depending only on
~~~~~~~~~~~~~~~-1u and the variation of-g' along a latitude circle. With v = 20 m sec

and w' =10 cm sec -1 , the last two terms are

v a'g' 2 X I10 Tsec -1

g' r asIr

w- 8g' 3 x101 sec -1

g' 8r'

*!
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Other basic equations

The other basic meteorological equations that contain derivatives,
and therefore depend on choice of coordinates and the shape of the earth
are

dO 0
dt

dq =0
dt

where e is potential temperature and q is specific humidity. In meteorology,
in effect, the substantial derivatives are expanded with (13), and therefore
no direct error whatsoever is involved.

(
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Supplement to NMC Office Note 139

Frederick G. Shuman

JULY 1979

In Office Note 139,top of p. 8, I perhaps too summarily disposed of

a0= r' + g ar'+ ap (16)~~g p~~r'j~~~r~~ ~~r (16)Dr 19p D-r' g Dr p Dr
without showing how closely it approximates the "true" hydrostatic condition.

To show this, I invent a set of orthogonal coordinates, one of which is r'.For illustration purposes, I neglect the variation of r' with A, taking intoaccount only the oblateness of geopotential surfaces. I adopt A, then, foranother of the ortohogonal set, and use 4' to indicate the third coordinate ofthe orthogonal set. The set consists, then, of A, 4', r'.
i!r ;'' i !!

- . ~ Let h2 , h 3 be so defined that h 2 V 4', h 3 Vr' are unit vectors. Now, thegravity vector, including centrifugal force due to earth's rotation, is

- g' h 3Vr' =- g Vr'
so that

(17)

From the figure, drawn in a Vr
= constant plane ,I note that h3Vr'

h 2 VV':;.;,:~: ' ,/

we~9~ SX

rV4

h 3 V r' . Vr = h2 V c-' *rV = cos c (18a)

h2 V ' · Vr = - h§V r' r V s = sin E (18b)

From these, I draw

h3 hr h 2 r ¥ = r hD = C° s e (19a)
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hi a D' - a _=_ Dhr'=r a' si
where all the partials have conventional meanings, exceptwhere all the partials have conventional meanings, except

(1 9b)

[a FDrJ

I invent this symbolism here because I have already made the following
definition (11c),

Dr' D r')D~~~~

Subscripts on the partials here, and elsewhere, denote the variables heldconstant in differentiation.

Equations (17) and (19a) give

DrI =g CosE
g-=gco c (20)

I expand Vp,

Vp = Ax. VA + DP Vol+ D' Vr'

and take its dot product with Vr,

Vp - Vr = Dp h 2Vo". Vr + aP': h Vr' · Vrh 2 3o' h 3 Dr'

Or, by (18),

DP = alp cos ~e + a sin err h~ arT

Equations (20) and (21) give

g Dr + I = g'+ ,Pcos
Dr p Drf19 h 3Dr'J

But the "true" hydrostatic condition involves
vertical, and thus is expressed by

0 = g' + 2[
h3 Dr'

s + DP sin E

the derivative of p in the truethe derivative of p in the true

(

(21)

wyieF3

, oI

*- (

40 '\,



14

Therefore, instead of zero, the expression in (16) is

g + 1 -p = sin a r p Dr h 2a p'
But e < 1/297 rad, so even with a geostrophic component of 100 m sec- ,

1 1P-1,sin e p1 cm sec 2
P h 2 Dp, 297

which is to be compared with g = 980 cm sec- 2 . Neglect of-this small termi -in (12c) is therefore justified.

The next question is, what about neglecting the hydrostatic terms in(12b)? From the second of the three transformation formulas following (11),and from (19),

9'r h 3 r'
ra (2 Ch-yro r = tan e

From this and (22), the hydrostatic terms in (12b) are therefore

a'r arf
rai D5 r I + 1

P
which is about 10-5 times - fu where ugand about 10- 4 times characteristic values
Thus its neglect is also justified in (12b).

r') = l - sin ctan e
is the geostrophic wind component,
of the acceleration terms in (12b).

.(
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